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The method of energy is used to discuss the stability of time-dependent diffusive 
temperature profiles in fluid layers subject to impulsive changes in surface 
temperature. 

Bounds for the ratio of disturbance energy production to dissipation are found 
to be parametric functions of time because the basic temperature develops 
through diffusion. This time dependence leads to the demarcation of regions of 
stability in a Rayleigh number-time plane and the interpretation of these regions 
is given. Numerical results are presented for the cases of impulsive heating and 
cooling of initially isothermal fluid layers. New global stability results which 
give the Rayleigh number below which the diffusive solution to the Boussinesq 
equations is unique are reported for these cases. 

1. Introduction 
The stability of flows whose base state is time-dependent has received increased 

attention in recent years. The problems considered thus far fall into two main 
categories., 

Considerable theoretical work has been done on the linear stability of har- 
monically modulated base flows, exemplified by Yih & Li (1972), Gresho & 
Sani (1970), Venezian (1969), and Rosenblat and co-workers (Rosenblat & Her- 
bert 1970; Rosenblat & Tanaka 1971). Within the confines of linear theory, the 
approach usually taken in these works is to remove the spatial dependence 
in the governing equations by Fourier decomposition, followed by a Galerkin 
expansion of the disturbance variables in the remaining spatial direction in terms 
of trial functions with time-dependent amplitudes. In some cases, a long-wave 
expansion is possible (Yih 1968). The long-time behaviour of the resulting linear 
amplitude equations is then determined by a straightforward application of 
Floquet theory. Given the convergence of the Galerkin expansions, such an 
approach is rigorous and the results obtained to date can be assumed to de- 
scribe properly the stability of such systems with respect to infinitesimal 
diskirbances. 

The situation in the case of base states which evolve in time following and 
impulsive step change is far less satisfying. The Galerkin equations describing 
the initial growth of small disturbances are linear but non-autonomous, and 
one loses the property of translation to zero time, which applies for steady flows, 
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i.e. disturbances can no longer be set proportional to exp (crt). The possibility 
of obtaining the asymptotic time dependence is also lost, since no periodicity is 
present in the base state. Early approaches to the problem consisted of ‘freezing’ 
the base state at  a given time and determining its marginal stability; the time 
thus appears only parametrically (Lick 1965; Currie 1967). This attack proceeds 
from the assumption that disturbances are growing faster (in some suitable sense) 
than the base state is evolving; it is obvious, however, that the worst time to 
apply this assumption is at  marginal conditions. Onset times for instability 
predicted by this approach are generally quite low. By onset time, we mean the 
time at  which the disturbances are observable by a suitable transducer. This time 
depends to some extent upon the sensitivity of the measuring device, but dif- 
ferent methods of observation seem to yield the same value. ‘Momentary in- 
stability’ methods have also been attempted with little success and have been 
critically evaluated by Gresho & Sani (1971); see also Chen & Kirchner (1971). 
An alternative approach to this class of problems has been taken by Foster 
(1965, 1968) followed by Mahler, Schechter & Wissler (1968), Mahler & Schechter 
(1970), Gresho & Sani (1971) and Chen & Kirchner (1971). The linear (Galerkin) 
equations are integrated numerically subject to some initial conditions and the 
growth of disturbances is followed as a function of time. Two difficulties arise 
in this approach. The first is conceptual in nature and involves a subjective de- 
cision as to how large disturbances must grow before they become observable. The 
problem occurs because the stability equations in this case are linear and homo- 
geneous and hence disturbance amplitudes are indeterminate ; only amplifications 
relative to the initial conditions can be computed. The occurrence of visible motions 
corresponding to the loss of stability must then be correlated with the computed 
amplification through comparison with experiment. Unfortunately no single 
value of the amplification will predict the experimentally observed onset times. 
The experiments of Blair & Q,uinn (1969), Mahler & Schechter (1970), Chen & 
Kirchner (1971) and Davenport & King (1972) indicate that the empirically 
determined value of the amplification of kinetic energy corresponding to 
onset lies between I 0  and lo8. A second difficulty with this class of methods 
is the surprising effect the choice of initial conditions has on the computed 
amplifications (Gresho & Sani 1971, figure 5). The strong dependence does 
not appear to reflect properly the behaviour observed experimentally and is at  
odds with one’s physical intuition that initial conditions should be relatively 
unimportant. 

Resolution of these crucial problems would thus seem to await the develop- 
ment of a nonlinear theory. A first step in this direction has been taken by 
Davis (1971), who has extended the Stuart-Watson method to time-varying 
base states. The method remains fairly formal however since in most cases 
the complexity of the results of linear theory makes the possibility of major 
analytical progress seem remote. 

The objective of the present paper is to determine sufficient conditions for 
stability of time-dependent motions using the method of energy. It has been 
dramatically demonstrated in recent years that the energy method is comple- 
mentary to linear stability theory, for the two taken together clearly limit 
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the regions in parameter space for which subcritical instabilities are possible ; 
see Joseph (1971). It thus seems appropriate that, in parallel with the linear 
stability work outlined above, the development of the energy theory for time- 
dependent base states should begin. In this spirit, the present paper seeks to 
clarify the early work of Conrad & Criminale (1 965 a, b) and amplify some results 
which are latent in the work of Joseph (1966) and Joseph & Shir (1966). We 
do so within the context of that class of problems for which rigorousst ability 
results of any sort are sorely lacking, namely the stability of fluid layers subjeot to 
impulsive heating or cooling. Davis (1 972) has applied the energy method to this 
problem in a limited context. By treating the time-dependent part of the de- 
veloping base-state temperature field as a disturbance, simple application of 
Joseph’s (1966) results yields the somewhat obvious results that layers subject 
to such heating histories are asymptotically stable for Rayleigh numbers below 
the classical critical value. Such a result may be deduced by purely physical 
reasoning. If the layer is to be convectively unstable for all time, then the 
energy necessary to drive the motions must be derived solely from the poten- 
tial energy available owing to the (constant) imposed temperature difference. 
Clearly, this can be the case only for supercritical Rayleigh numbers. The results 
developed in the present paper will be seen to complement this result, giving a 
definite value of the time at  which disturbances, if present at  subcritical Rayleigh 
numbers, must begin to decrease strongly. 

In $ 2  we develop the energy evolution equations for such base states. The 
optimal stability boundary is discussed in $ 3 as well as the qualitative shape of 
the boundary for small and large times. Section 4 presents computations for three 
cases of interest. As a result of these calculations new global stability results are 
now available for fluid layers subject to rapid heating or cooling. 

2. The energy identities 
We consider a class of problems in which an initially quiescent fluid layer which 

may be stably or unstably stratified (but linearly stable) is subjected to impulsive 
changes in the thermal conditions at the bounding horizontal surfaces. Let the 
fluid depth bed, the thermal diffusivity K and a characteristic (constant) tempera- 
ture difference AT. Then under the scaling {r, t ,  $} = {d ,  d 2 / K ,  AT) a diffusive 
base state exists in which the fluid velocity v = 0 and the dimensionless tempera- 
ture 8 satisfies the diffusion equation 

subject to appropriate initial and boundary conditions. 
We wish to inquire under what conditions this base state remains stable 

to disturbances of arbitrary amplitude. The derivation of the energy indentities 
closely parallels that of Joseph (1966)) and hence only the essential steps are given 
in detail here. 

Let the scalings of disturbance variables be 
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The nonlinear Boussinesq equations governing these disturbances are then given 
in dimensionless form by 

n-l(av/at + v .  Vv) = - V p  + V2v + Ra Ok, ( 2 . 2 ~ )  

aqat  + v . ve = v2e - w(a8pz). ( 2 . 2 b )  

The notation is standard. n is the Prandtl number, Ra = g p h T d 3 / ~ v  is the 
Rayleigh number, k the unit vector in the x direction ( z  is measured positive 
upwards) and w the vertical component of velocity. For non-deformable bounding 
surfaces across which there is no flow, and at which a thermal condition of the 
third kind holds, i.e. n. VB = -LO, one can derive the energy identities from 
( 2 . 2 )  in the usual manner (Joseph 1966, p. 164):  

--= dK(v) d ( I  ~ 1 2 )  = - (Vv: Vv) + Ra(wO), 
2 at 2 a d t  

( 2 . 3 ~ )  

We then take a linear combination of (2.3a, b )  so as to form a positive-definite 
‘energy ’ functional E‘ = K + ARaO ; A, Ra > 0. Thus, 

LdEl = Ra((w8)-A(weg)) - [(Vv:Ov+hRalC8/2)+Rah LO2 . ( 2 . 4 )  
2 dt § I  

Equation (2.4) may be put into symmetric form by introducing 

$ = (hRa)*B and E = K(v)+O($). 

The resulting energy identity may then be shown to satisfy the differential 
inequality 

1 dE Ra4 

PA 2 dt 
BPI-- 6 - l + - ,  (2 .5 )  

where D = < Vv: Vv+ IV$12 > +$ Lq52 and ph is a solution to the maximum 
problem 

( 2 . 6 ~ )  

D = 1. ( 2 . 6 b )  

The space h over which the maximum is taken is discussed in detail by Davis 
(1969) .  It is sufficient to note that it is comprised of couples (v ,$)  satisfying 
the thermal and kinematic conditions at  the boundaries together with the con- 
straint that v be solenoidal. 

Equation (2.5) thus forms the starting point for our discussion. Clearly 
the disturbance energy decreases whenever Rai < ph. However, pn depends 
parametrically upon the dimensionless time t via the time dependence of the 
base-state temperature gradient. Thus solutions of the maximum problem 
for varying t will produce a curve in the pA, t plane. It is from this curve that we 
may draw conclusions regarding the stability of the flow. 

In particular, our main interest is in proving strong stability in the sense of 
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Joseph (1971), that is, exponential decay of the energy with time. To develop 
this property in full, we may further reduce (2.5) to 

(2.7) 

whenever Ra < p,(t). Here E2 is the usual decay constant whose value is available 
for plane layers (Joseph 1965). The validity of (2.7) relies both upon the use of the 
isoperimetric inequality D 2 52E and the requirement Ra4 < p,(t). The questions 
of lower bounds for onset times and global stability clearly depend upon the 
shape of the stability boundary in the p,, t plane, but it is convenient to postpone 
a discussion of these points until the nature of the optimal stability boundary has 
been elucidated. 

+(dE/dt) < Et2( - 1 +Ra*/p,(t)) 

3. The optimal stability boundary 
As with similar problems involving both vector and scalar fields, we wish to 

choose the ‘coupling parameter’ h so that the region of stability is as large as 
possible. In the present problem, therefore, we inquire into the consequences of 
allowing h to vary so as to yield the maximum value of pn. Thus in addition to 
( 2 . 6 ~ )  b )  we solve the problem 

p”(t) = maxp,(A,t). (3.1) 
A 

This process may then be repeated for different values of the time, yielding an 
optimal stability boundary p”(t) and a corresponding set of coupling parameters 
x = hopt(t). However, care must be taken at  this point since in deriving (2.4) 
from ( 2 . 3 ~ )  b)  h was assumed constant. The difficulty is one of ensuring that the 
time dependence of X does not preclude the existence of a suitable Lyapunov 
function (or functional) which is bounded by E‘ and hence bounded by the right- 
hand side of (2.5). The simplest criterion available (and one which is shown 
below to pose a serious constraint for the present class of base states) is the require- 
ment that, in addition to  h > 0,  we also must have dh/dt < 0. 

If these constraints are met, the result follows immediately from the inequali- 
ties 

1 d E  
2 at 

l a  
2 at 
--((jvlZ/v+hRaO2)) = +:RuOA’ < -- 6 ... . (3.2) 

It is argued below that the additional constraint that x be monotone decreasing 
is probably an active one for the class for base states considered here, and the 
numerical calculations detailed in $4 bear this out. We show below, however, 
that, under relatively mild restrictions on the functionp,(t), the optimal stability 
boundary computed via (3.1) is in fact the correct one. 

In  order to establish properties regarding the shape of the optimal stability 
boundary and the parametric time dependence of X, it is convenient to consider 
the Euler-Lagrange equations for problem (2.6 a). Introducing multipliers for 
the constraint (2.6b) and the solenoidal constraint on v, we obtain the following 
Euler-Lagrange equations in the usual manner: 

v . v  = 0, ( 3 . 3 ~ )  
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(3.3b) 

(3.3c) 

By parametric differentiation, one finds (Jospeh & Shir 1966) 

([Sh (2 - 1) + A8 (91 w$)  = - J(A+/PJ. (3.4) 

Equation (3.4) can be used to deduce two important properties necessary for 
the discussion. The first of these is that if (v, $) are maximizing functions at  
any time t ,  then the best A, i.e. the one for which ap,/ah = 0, is given by 

This is a specialization of a result due to Joseph & Shir (1966). Now for base- 
state temperature gradients resulting from impulsive changes in boundary tem- 
peratures, @/az will in general be given by a steady part plus a transient term 
which decays rapidly in time for moderate times. Equation (3.5) thus suggests 
that the additional constraint dX/dt < 0 might not be satisfied by the optimal 
coupling parameter. 

The second property of interest concerns the shape of the optimal stability 
boundary in the limit of large or small times. If h is chosen as its best value, and 
(v, $) is a maximizing couple, then 

appt = (aplat), 
and thus from (3.4) we have 

Now from the original maximum problem, (2.6 a) we have the additional formula 

X + p  = - ((ii(a8pZ) - 1)  we). (3.8) 

Combining (3.7) and (3.8) and using (3.5) we have 

Further integration of (3.9) would seem to require detailed knowledge of both X 
and the maximizing functions (w,$).  However, it is obvious that as t +a, 
a8/at -+ 0, -+ X o  and p" approaches its constant limiting value. Furthermore, 
under the assumption that limX(t) exists, we have 

t+O 

(3.10) 

We turn now to an interpretation of the stability boundary. Clearly two pos- 
sibilities present themselves, depending upon the slope of the optimal stability 
boundary in the p", t plane. 
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t 

FIGURE 1. Stability boundary with negative slope. The line indicates the solution to problem 
(2.6) and (3.1). In the shaded area, the energy is guaranteed to decrease exponentially. 

t 

FIGURE 2.  Stability boundary with positive slope. Disturbances decay exponentially for 
all (Rat, t )  to the right of the curve. No statement can be made concerning the region to  the 
left of the curve. 

Figure 1 depicts the case in which the slope is negative, e.g. as in Conrad 
& Criminale (1965a). The curve represents the locus of points (p”, t ) .  For any 
given Rayleigh number, the results yield lower bounds for the onset time for 
disturbances of arbitrary initial amplitude. For (Ra*, t )  pairs to the left of the 
curve, the energy is guaranteed to  decrease exponentially in accord with (2.7). 
The stability of the area lying to the right of the curve cannot be decided by the 
present method. 

For stability boundaries with positive slopes (figure 2 ) ,  no results regarding 
the onset time are available. However, everywhere to the right of the dotted 
curve (2.7) guarantees that disturbances must decay exponentially; at  small 
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t* 
t 

FIGURE 3. The function pA(t) and the trajectory of an experiment 
in the PA, t plane. 

times, i.e., to the left of the curve, no statement can be made. The boundary thus 
gives the time after which disturbances, if present, must begin to decrease 
exponentially. In addition to these results, global stability limits for stability 
boundaries of this type may be deduced. From (2.7) we have 

(3.11) 

Integration yields 
E(t)  < E(o)  exp{ - (2( 1 - Ra*/minp”(t)) t}. (3.12) 

Thus the layer is globally stable for all Ra4 < minp”, and the diffusive solution 

O(z, t )  of the Boussinesq equations is therefore unique. 
It remains to demonstrate that the process of constructing the optimal sta- 

bility boundary (3.1) remains valid if the constraint &/at < 0 does not hold. 
We accomplish this under the mild assumption (which appears unprovable but 
computationally true with one minor exception) that for u given A, pA(t) is a 
monotonic function of t .  Consider boundaries for which pA(t) is monotone in- 
creasing. Then the family of curves will appear as sketched in figure 3. The proof 
hinges on the fact that any experiment corresponds to the trajectory consisting 
of a level horizontal line on such a sketch. Thus, to prove, for instance, strong 
stability after a time t* for Ra = Ra*, fix the value of h for which 

t 

t - 

Ra** = p” = maxpA(t*). 

Then, provided pA(t) is monotone, one makes the usual arguments following (2.7) 
for that fixed A. Similar arguments hold for boundaries with negative slope 
(figure I), and will not be given. 

A 
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It is clear from figure 3 that the process of constructing the optimal boundary 
is actually the computation of the envelope of ph(t)  curves, which then delimits 
the region in Ra4, t space in which one can prove strong stability in the usual 
manner. 

4. Results for fluid layers subjected to rapid heating or cooling 
In  this section we present the results of the energy method for an initially 

isothermal fluid layer which is impulsively heated from below or cooled from 
above. The solution for the diffusive base state for these conditions is given as 

( 4 . 1 ~ )  

(4 .  I b )  

In (4.1), if Ic is set to zero, we have heating from below, and for Ic = n, cooling 
from above. The boundaries were considered to be conducting (L  = a), and 
either rigid-rigid or rigid-free. 

It is convenient to combine (3 .3~-c )  into two coupled equations for w and q5. 
These are found in the usual way to be 

( 4 . 2 ~ )  

(4 .2b )  

subject to q5 = w = 0 at  z = 0 , l  and either awlax = 0 at fixed horizontal bound- 
aries or a2w/8z2 = 0 at  free horizontal boundaries. Here V: is the horizontal Lap- 
lacian. It is interesting to note that, with h = 1, equations (4.2) are the sym- 
metric part of the frozen-time equations (Gresho & Sani 1971, p. 208). Thus at 
large times the time-dependent part of the gradient constitutes a small perturba- 
tion of the case of steady linear stratification, and the energy and frozen-time 
predictions must necessarily be close. 

Since (4.2) are cyclic in the two directions normal to the z co-ordinate, we can 
Fourier decompose (w, q5) into modes characterized by a single wavenumber a. 
We then treatp, as the lowest eigenvalue of the set (4.2) and seekp" = max minp,. 

The results were generated extremely efficiently using the Rayleigh-Ritz 
procedure. Following Fourier decomposition, the x-dependent functions 8 and 
$ are expanded in series of trial functions which satisfy the appropriate boundary 
conditions. We have used 'beam' functions and sines for 8 and $ respectively 
with up to 15 terms in each expansion. If N terms are taken in each expansion 
the Rayleigh-Ritz method results in a 2N x 2N algebraic eigenvalue problem. 
This problem is transformed to a N x N symmetric problem, the eigenvalues of 
which are then determined by an adaptation of a method due to Martin & Wilkin- 
son (1968). Details of the computational procedure are available from the author 
upon request. 

A a .  
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FIGURE 4. Computed results for initially isothermal layers. ----, fixed-fixed, heat or cool: 
_ _  , fixed-free, heat from below; ___ , fixed-free, cool from above. 

Conditions P L  
Rigid-rigid 996.6 
Rigid-free-heat 718.6 
Rigid-free-cool 465 (extrapolated) 

TABLE 1. Global stability results 

The results are shown in figure 4, and are believed to be accurate to five signifi- 
cant digits. As suggested by (3.5), the best h was such that dX/dt 2 0 for all times. 
Furthermore the computed % appeared to approach a limiting value at small 
times. 

For rigid-rigid conditions, the optimal stability boundaries for heating and 
cooling coincide owing to the obvious physical symmetry. This afforded a check 
on the numerical scheme. For the rigid-rigid and rigid-free-cool cases, the 
stability boundary has a distinct minimum at very short times. This was suspect 
at  first, but after repeated independent checks, it was found to be genuine. It 
is also suggested by (3.10). At small times it can be shown that 82B/8x8t is positive 
for all z and assuming the product wq5 is single-valued on 0 < x 6 1, we have 
limp”-ldP/dt < 0. This minimum does not invalidate the arguments made at  the 

end of the last section, since the small region to the left of the minimum is of no 
consequence in deducing either global stability or times after which disturbances 
must decay. 

With regard to the long-time behaviour, it  is known from the frozen-time 
results of Gresho & Sani (1971, figure 11) that at large times computed Rayleigh 
numbers are less than their limiting steady values. Since the energy and frozen- 

t-0 
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time results must be arbitrarily close as time increases, the trend of the curves 
in figure 4 at long times is substantiated. 

Fluid layers impulsively heated or cooled are globally stable for Rayleigh 
numbers less than those given in table 1. For Rayleigh numbers between these 
global values and the linear BBnard limits, finite-amplitude convection cannot 
be excluded. The results however do furnish an explicit value for the time at 
which any convective motions, if present, must begin to decay exponentially. 

I wish to acknowledge helpful discussions with S. H. Davis, who detected an 
error in an earlier version of this work, and the help of Linda Kaufman of the 
Computer Science Department, Stanford, with some of the numerical work. The 
computing was supported by the School of Engineering, Stanford University. 
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